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Abstract. The Survival probability P(t) =I(401+(t))12 for an initial complex Gaussian 
wavepacket is calculated here for the tint time by the Lancros recursion method 
combined with the QL algorithm without computing the eigenfunnions ofthe Hamiltonian. 
Consequently, for an N x  N Hamiltonian matrix the correct dynamical behaviour of the 
system i s  obtained by carrying out nN' numerical operations rather than N', where n is 
the number of Lanczas recursions. 

We show that when 4o is located in  the regular region of the classical phase space 
the ratio n / N  is smaller than in  the case when it is located in the chaotic regime. This -".:" :" _..*..̂ oA "".LO " r .  "...",,a- .-.." ,* .."".." '.= ", . "LCYI... 

1. Introduction 

The time evolution of a wavepacket for time independent model Hamiltonians can be 
studied by two different approaches. 

By taking the direct approach, the time dependent Schrodinger equation I s  solved 
for a specific given time 1. There are, of course, many methods for wavepacket 
propagation. For example, two computational methods which are successfully and 
widely used in the study of different physical problems are Heller's approach (1981) 
where the initially Gaussian wavepacket follows the classical dynamics of its centre, 
and Kosloffs method (Bisseling er nl 1987) where the exact time dependent solution 
is obtained by expanding the evoiuiion operator e ~ ~ ~ ~ '  ' in a Chebycnev polynomial 
series. Recently, Park and Light (1986) &veloped another quantum time evolution 
method for wavepackets on the basis of the Lannos  algorithm. In their method n, 
independent Lanczos recursive vectors provide the desired coefficients in the series 
expansion of the time evaluated wavepacket. The time dependent solution of the 
Schrodinger equation is accurate over time interval O <  f < T for given n Lanczos 
recursive veciois. For shoe time ca:cu:ation ii is ZiCh snia::ei than the :imeasion of 
the original Hamiltonian matrix. Therefore, this method allows us to study the dynamics 
of very large systems when the optimal 7 is a function of the desired accuracy and of 
the available computational facilities. 

The second approach to obtain the time dependent solution of the Scbrodinger 
equation is to calculate the variational eigenfunctions of the time independent Hamil- 

($olEm). This variational method is limited to small systems which can be represented 
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by a relatively small Hamiltonian matrix N < 1000, since the computational time 
required to calculate the eigenvectors of H increases as N’. 

A promising procedure which reduces the computational time was used by Ceder- 
baum, Freed, Wyatt and their co-workers (Haller er al 1980, 1985, Moro et a1 1980, 
1981, Nauts and Wyatt 1983, Wyatt and Scott 1986). This procedure is based on the 
Lanczos recursion method (Lanczos 1950). By the Lanczos algorithm the N x N 
Hamiltonian matrix is transformed to an n x n tridiagonal matrix, T. 

The Lanczos algorithm has been used in molecular dynamics not only to get the 
eigenvalues of very large matrices but also to calculate other molecular properties. 
Moro and Freed (1980, 1981) used the Lanczos algorithm in calculating the frequency 
dependence of the spectral density, Cederbaum and co-workers in the study of vibronic 
coupling problems (Haller er al 1980, 19851, Berman and Domke (1984) in the 
evaluation of the optical potential for electron-molecule scattering, Friesner et a1 (1987) 
in the study of multiphoton excitations Wyatt (1985) in the study of the flux autocorrela- 
tion functions and reaction rate constants, Bard and Friesner (to be published) in the 
simulation of electrode processes, Marshall and Hutchinson (1987) in the study of 
intramolecular energy transfer in propargyl alcohol, and recently Kolin et al (1988) 
in the calculation of the coupling strength between a resonance state and different 
scattering channels of H D  from a flat Ag(ll1) surface. 

When the first Lanczos recursive vector is taken as (+oixlj; i =  i ,  . . . , N ({xlj are 
the basis functions which were used to construct the Hamiltonian matrix), the first 
row of the eigenvector matrix of T provides the coefficients (+ol€,) in the series 
expansion of + ( t ) .  The first row eigenvector coefficients are calculated during the 
diagonalization procedure when the QL algorithm is used. In passing, note that the 
combination of the Lanczos algorithm with the QL algorithm is not new. It has been 
used before by Haller er a1 (1985) and also by Wyatt and Scott (1986). 

In order to get the time dependent properties of the studied system all possible 
transition amplitudes ( + j l € a ) ( € a l + j )  should be calculated. However, either with the 
residue algebra (Moiseyev et a1 1986) or with the efficient block-Lanczos algorithm 
most recently developed by Meyer and Pal (1989), the CPU time is reduced by a factor 
of - N. Therefore, for large systems which are represented by very large Hamiltonian 
matrices, the Lanczos recursive method togzther with the QL algorithm is suitabie, in 
particular, for calculating properties which depend on the squares of the eigenvector 
matrix \ ( + o l € m ) 1 2 ,  such as the survival probability P ( t ) .  In this sense the method is less 
general than the direct methods mentioned above. However, it is applicable to problems 
with more than two degrees of freedom, and only three out o f  the n computed recursive 
vectors are stored. 

In this paper we apply the Lanczos recursion method combined with the QL 

algorithm to stochastic systems. 
Our purposes are as follows. 
( 1 )  To test the efficiency of the method for an initial complex wavepacket which 

is a ‘natural’ choice, for example, in the study of classical against quantum dynamics. 
(2) To provide a simple formula from which one can get an upper bound to the 

number of Lanczos recursions, n, which are required to get P (  t )  with a given accuracy 
over a time. interval 0 < f < T. 

(3) To study the role of  symmetry mixing solutions in the mechanism which leads 
to quasiperiodic and stochastic behaviour of P ( t ) .  

This method has a practical value in the study of the dynamics of very large systems 
(represented by an N x N Hamiltonian matrix) since it requires nN’ numerical 
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operations rather than N 3  in the calculation of P ( r )  with a given accuracy. Moreover, 
the numerical results presented in section 3 illustrate the fact that n << N when q50 is 
located in the regular region of the classical phase space rather than in the chaotic 
regime and also, as f becomes shorter. 

In section 2 we show analytically that P ( t )  can be obtained with a given accuracy 
after applying less than n Lanczos recursion steps, over a time interval T which is 
greater than npL,""le. pn is the nth moment of the Hamiltonian which can be obtained 
during the Lanczos recursion procedures. For nonlinear stochastic systems (such as 
the non-integrable Henon-Heiles system and the integrable second harmonic gener- 
ation Hamiltonian) n is proportional to 7. Indeed, the numerical results presented in 
section 3 confirm this suspicion. 

The numerical results presented in section 4 indicate that the role of mixing different 
symmetry solutions in the mechanism which lead to quasiperiodic or stochastic 
behaviour of P ( t )  is strongly dependent on the location of initial wavepacket in the 
classical phase space. 

2. Dynamics of a complex initial wavepacket by the Lanczos recursion method 
combined with the QL algorithm 

Within the framework of the finite basis set approximation the Hamiltonian is construc- 
ted of N basis functions {xt}. In the first step of the calculation the N x N Hamiltonian 
matrix is recursively converted into an n x n tridiagonal symmetric matrix T, where 

r,, =a, T,+l,, = T,,,,, = P . .  (1) 
The recursive vectors which provide the transformation matrix U, = 

(U , ,  U,, . . . , U.) for which T= U'HU are obtained by the Lanczos algorithm. For a 
general complex initial state the Lanczos recursions are carried out: 

In the second step of the calculations the QL algorithm is used to get the eigenvalues 
of T. In the QL algorithm the tridiagonal matrix T is taken into a diagonal form by 
carrying out a similarity transformation 

SLITSx = LkQx as k + m  

where 

sx = Q, . . .ox (5) 
and Lx is a lower triangular matrix. As pointed out by Haller er a1 (1985) and also by 
Wyatt and Scott (1986). when the eigenvalues { E m }  are calculated simultaneously one 
can obtain the first row eigenvector matrix of T, C,, = U: C,, by operating on the right 
of each transformation as it is generated 

(6) e;Sk = (1,0,. . .)Q,Q,. . . Qx. 
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Note that C, are the linear variational coefficients (which are not(!) calculated) of 
the exact eigenfunction IE=), 

N Ben-Tal and N Moiseyev 

IEe)=X C,,lx,). (7) 

Therefore, if U ,  is the projection of @, on the basis functions U ,  = {($&); i = 1, . . . , N }  
then the desired coefficients are given by 

($oIEm)= U:Ce = CI, (8) 

P ( r ) =  X I C I , ~ ~ ~ C I ~ ~ I *  cosl(E, - E,,)t/hI. (9)  

and the time dependent survival probability is given by 

Y," 

As discussed by Park and Light (1986) there is a strong correlation between the 
time interval T for which the dynamics can he obtained for a given accuracy and the 
number of Lanczos recursions which are carried out during the numerical computations. 
A closed analytical equation from which one can estimate the number of Lanczos 
recursions which are required to get the 'correct' dynamics over a time interval T can 
be obtained. The time evaluated wavepacket can be expanded in a power series of the 
Hamiltonian I?, that is, 

where {fi"&} are the non-orthogonal Krylov states that after Schmidt orthogonalization 
provide the n Lanczos recursive states. By making use of the Stirling's formula (for 
n > n')  

one can get from (10) that the survival probability P ( t )  is given by 
In(n!)- ( n )  In(n)- n ( 1 1 )  

where 
ep;'" 

hn 
T, =- r 

and pn is the nth moment of the Hamiltonian 

p. =(4olI?"l@o). (14) 
For a given time t < T convergence of the power series in (12) is guaranteed after n 
Lanczos recursions if 

Tn<l .  (15) 

Therefore, after n Lanczos recursions P(r)  within a given accuracy can he obtained 

n << epLi"T. (16) 

The moments of the Hamiltonian, {p"} ,  can be obtained during the Lanczos recursive 
procedure (Schek and Wyatt 1985). The calculations of high-order moments are 
expected to be numerically unstable. In the case where pn varies slowly with n, then 
TOC n, and the interval T for which P(r)  is obtained within a given accuracy is linearly 
dependent on the number of Lanczos recursions which were carried 'out during the 
numerical computation. 

over a time interval T when (for h = 1) 
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3. The survival probability for chaotic and regular systems by the Lanczos algorithm 

In the comparison of quantum and classical behaviour of chaotic and regular systems, 
a natural choice is to follow the evolution of wavepacket initially given as 

when xo, yo and xo, j 0  are constants which define a point in the classical phase space. 
A wavepacket placed in the regular region will disperse slowly in time, whereas a 
wavepacket located in the chaotic region will disperse much more rapidly (Moiseyev 
and Peres 1983) and in a relatively short period of time the system will not ‘remember’ 
its initial condition (Moiseyev 1983). In such a case the dynamics of the system can 
be studied by statistical approaches such as R R K M .  The explanation of the difference 
in the rate of spreading of wavepackets is based on the fact that the quantum energy 
spectrum of a classically regular system consists of families of equally spaced levels, 
but there is no such regularity for a classical chaotic system (Moiseyev and Peres 
1983). Indeed, numerical calculations for the Henon-Heiles system show that the levels 
for which l(401€e)12 f 0 are approximately equally spaced for the wavepacket 4o which 
is initially placed in the regular region (Moiseyev and Peres 1983). As the semiclassical 
limit of f i  + 0 is approached, more states, IE,) are involved in the dynamics and the 
Hamiltonian should be represented by a larger matrix. Large Hamiltonian matrices 
can be used when l ( @ o l € m ) 1 2  is calculated without explicitly constructing eigenvalues 
by the Lanczos recursion method combined with the QL algorithm. Moreover, we show 
here that if 4,, is placed in the regular region, the dynamics (i.e. calculating l(401€e)12 
of an N x N Hamiltonian matrix) is obtained by the diagonalization of a smaller n x n 
tridiagonal matrix (n<< N ) .  The results presented in figure 1 show the population of 
the various energy levels for two wavepackets which have the same energy 

(4blfil+3=(4b’lfil4b’) (18) 

the same width, centred on classical orbits which have about the same periodicity T, 
but placed in diflerent regions of the classical phase space. 4; is centred on a stable 
periodic orbit and 4: on an unstable periodic orbit (the values of the initial parameters 
are given in a previous work of Moiseyev and Peres (1983) and in figure 1). The 
converged results which were obtained by calculating only the first row of the eigenvec- 
tor matrix of a tridiagonal symmetric matrix (i.e. N 2  numerical operations) are identical 
to the results which were obtained by Moiseyev and Peres when the entire eigenvector 
matrix of the Henon-Heiles Hamiltonian matrix was calculated (i.e. N 3  numerical 
operations). (The N = 400 basis functions are products of harmonic oscillator eigen- 
functions in the x and y directions.) From the results presented in figure 1 one can 
see that: 

( a )  For a 400x 400 Hamiltonian matrix the converged population probabilities 
were obtained after n = 200 recursions when the initial wavepacket bo is placed in the 
regular region, and after n = 300 recursions when 4n is located in the chaotic region. 
Therefore, P (  I )  is obtained by carrying out half of the numerical operations, which 
are required when the standard diagonalization procedures are used. 

( b )  Using 10-15 recursions, similar population probabilities were obtained for the 
two different initial wavepackets, 4; and +A’ (in figure 1 we represent only the results 
for 10 recursions), This result seems to be consistent with the numerical evidence that 
for a short time, -6 time units, the spreading rates of the two different initial 
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Figure 1. Populations of various energy levels of the Henon-Heiles system, d' ,  for two 
coherent wavepackets, +; and 4:' (which have the same energy, E =&; same width, 
h = 0.015; centred on classical orbits which have about the same periodicity, i = 6) for 
different numbers of the Lanczoa recursions n. The population probabilities on the LHS 
are for 4: which is centred at x,=y,, yo =0.302 668 17 and those on the RHS are obtained 
for +A' which is centred at x,=);,=O and yo=-0.185405087. 

wavepackets are very similar (Moiseyev and Peres 1983). Therefore, following the 
discussion in section 2, for chaotic systems n = re and n is expected to be equal to 6e 
(about 16). This is in agreement with the numerical evidence that up to n = IS recursions 
similar population probabilities were obtained for the two wavepackets 4' and 4". 

The dynamics of the nonlinear, integrable (in classical mechanics) and exactly 
soluble (in quantum mechanics) systems which are described by the Hamiltonians 

k = 1 , 2 , 3  (19) 

was previously studied (Moiseyev 1983). By using the counter rotational approximation 
the Henon-Heiles Hamiltonian is reduced to the special case of I = 2 (known as the 
second harmonic generation Hamiltonian) where 

f i = i t i + 6 r 6 + h [ ( a  I t  ) k' b + 6 ' t k ]  

A=%. (20) 

The survival probabilities for the initial wavepacket (with h =0.015) as a function of 
the Lanczos recursion number n are given in figure 2. These results indicate that the 
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Plt) 

Figure 2, Survival probabilities P ( r )  = ! ( & ! + ( r ! ! 2  for !he recond h a r ~ g n i c  geccration 
Hamiltonian given in (26). for different numbers of the Lanczos recursions n. 

number of recursions required for convergence of the survival probabilities increases 
with time: 

( a )  For f S 471, convened results are obtained after 50 recursions (i.e. diagonaliz- 
ation of a tridiagonal matrix with the number of non-zero matrix elements which is 
smaller by a factor of 1000(!) from the number of the non-zero matrix elements in the 
original 400 x 400 Hamiltonian matrix). This result illustrates the practical value of the 
combined Lanczos and QL algorithms in the study of very large systems. 

( b )  For tS2011, only 200 recursions are required to get an accurate survival 
probability, and for f = lOOO?r, more than 400(!) recursions are needed. 

( c )  After 50 recursions P ( t )  is converged (to the accuracy given in figure 2) for 
O < f  <6n. After 100 Lanczos recursions a converged result for P ( f )  is obtained for 
O <  f < 1011, and after 200 recursions for 0 < f < 205~. 

Thus, the time interval for which P( f) can be obtained to a given accuracy depends 
linearly on the number of Lanczos recursions, as was proposed for stochastic systems 
in section 2. 

4. Quasiperiodic and stochastic behaviour of P(t) 

The dependence of the rate of decay of the survival P ( f )  on the initial state and on 
the particular Hamiltonian studied was extensively discussed in the literature (see for 
example, Brumer and Shapiro 1980, 1982, Davis er a /  1980, Hutchinson and Wyatt 
i980, 198i, Weisman and Jortner i98i,  i982, iieiier and Stechei i982, Pecnukas i98ij .  
The difference of the quantum dynamics in the regular and chaotic regimes is not 
necessarily expressed by the slow or quick decaying of P ( f ) .  As pointed out by Peres 
(1982), even a system of two uncoupled harmonic oscillators with incommensurate 
periods will have infinitely long recurrence time. As a matter of fact any behaviour of 
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t 1 

0 

t 
Figure3. The timedependent survival probabilities for three different model Hamiltonians: 
I =  1 stands for two linearly coupled harmonic oscillators (see (19)). I = 2  stands far the 
second harmonic generation Hamiltonian and H.H far the Henon-Heiles system H = 
I/Z(P:+ P:  + x'+y2)+ x'y - 1/3y'with h = 0.015. The results of P ( r )  which are presented 
in a , ,  b , ,  c, were obtained for the initial wavepacket $;and figures ai, b,, c2 for the initial 
wavepacket 4;'. ( a )  Short-time behaviour. ( b )  Long-time behaviour. 
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P( t )  can be reproduced, to a given accuracy, by selecting a proper specially designed 
initial wavepacket for one-dimensional harmonic oscillator with small enough 
frequency. However, the initial wavepacket cannot be randomly selected and is deter- 
mined by the experiment or by specific theoretical requirements. For example, in the 
comparison of classical against chaotic dynamics we should require that &,will 'shrink' 
to a point in the classical phase space as h + 0. In figure 3 the survival probabilities 
P ( t )  are presented for two different initial wavepackets which are given by (17) and 
for different model Hamiltonians. Figure 3 ( n )  shows the short-time behaviour of P ( t ) .  
Rapid decay of P(t) is obtained even for the second harmonic generation and the 
linear coupling harmonic oscillator Hamiltonians. As one can see from the long time 
behaviour of P ( t )  presented in figure 3 ( b ) ,  periodic behaviour of P ( t )  is obtained for 
the linearly coupled two harmonic oscillators but not for the second harmonic gener- 
ation Hamiltonian. The recurrence time I is about equal to a / h  = 2 r r m  and 
therefore, in the classical limit of h + 0, T + CC even in the separable case of the linearly 
coupled two harmonic oscillators. Consequently, the surprising resuli is not the fast 
decay of P ( t )  but the quasiperiodic behaviour obtained for the Henon-Heiles system ai 
high energy, where most of the regions in the classical phase space are chaotic. The 
quasiperiodic behaviour of P( t )  was obtained for small values of h when 4" is placed 
in the classical regular regime. 

It is obvious that if P , ( i )  and P2( t )  are the survival probabilities obtained for two 
different symmetry adapted eigenfunctions, then the mixing of-the two symmetry 
solutions makes P ( t )  to be a linear combination of P , ( t )  and PZ(t).  One may expect, 
however, that in the general case P I ( [ )  and P 2 ( f )  should not necessarily show exactly 
the same time-dependent periodic behaviour and therefore P ( t )  will not have a periodic 
or quasiperiodic behaviour (although P,(t) and P2( t )  do have a periodic or 

0.08 s2 F U2 

E E 

Figure 4. Populations of the various energy levels of the Henon-Heiles 5ySlem when only 
odd (denoted by I ) ,  even (denoted by 2 )  or both symmetry solutions are used to constma 
4; (denoted by S) and 4; (denoted by U).  
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quasiperiodic behaviour). As we show here P ( t )  should have a time periodic or 
quasiperiodic behaviour only when the initial wavepacket is placed in the regular 
regime of the classical phase space. From the results presented in figure 4 one can see: 

is placed on a classical stable periodic orbit (denoted by S), the 
dominant population probabilities, \(+olEa)12, are equally-spaced. Moreover the results 
obtained for even (S2) or odd (Sl) symmetry adapted eigenfunctions \E*)  are identical. 
Therefore, the mixing of different symmetry adapted solutions, S, increases the regular 
behaviour of l(+olE.)12 against E,, and P ( t )  will show a quasiperiodic behaviour. 

( b )  When +o is placed on an unstable periodic orbit (i.e. & is located in the 
classical chaotic regime denoted here by U for unstable), different results are obtained 
when +,, is projected on even, U,, or odd, U , ,  symmetry adapted eigenfunctions. 
Therefore the mixing of the different symmetry adapted solutions, U, increases the 
irregular behaviour of l(+olEe)\2 against E, and P ( t )  will show a stochastic behaviour. 

N Ben-Tal and N Moiseyeu 

( a )  When 

5. Concluding remarks 

The Lanczos recursion method combined with the QL algorithm as used by Haller er 
al (1985) and described in some more detail by Wyatt and Scott (1986) enable us to 
calculate the survival probability for a given initial wavepacket from the first row of 
the eigenvector matrix of a tridiagonal Hamiltonian matrix. The Lanczos and the QL 

algorithms were used to calculate population probabilities and survival probabilities, 
P(f), for initial complex Gaussian wavepackets. The dimension of the tridiagonal 
matrix for which P( f )  is calculated within a given accuracy over a time interval 0 i f s T 
is smaller as T becomes shorter and is affected by the location of eo in the classical 
phase space. 
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